普通年金终值公式怎么理解?普通年金终值公式推导
年金终值就是在已知等额收付款金额Present、利率(默认为年利率)interest和计息期数n时,考虑货币的时间价值,计算出的这些收付款到到期时的等价票面金额,今天小编为大家整理了详细的推导过程。
普通年金终值公式推导
推导思路如下:
(1)设终值为S,年金为A,利率为i,期数为n:S=A+A(1+i)+……+A(1+i)^n-1;
(2)等式两边同乘以1+i 得:1+iS=A(1+i)+A(1+i)^2……+A(1+i)^n;
(3)后式减前式可得:iS=A(1+i)^n-A ;则有:S=A[(1+i)^n-1]/i;
(4)其实这就是个首项为A,公比为(1+i),项数为n的等比数列的和。直接套用公式:首项×(1-公比的n次方)&pide;(1-公比)即可得出。
年金终值就是在已知等额收付款金额Present、利率(这里我们默认为年利率)interest和计息期数n时,考虑货币的时间价值,计算出的这些收付款到到期时的等价票面金额。
年金按其每次收付发生的时点(即收付当日日是在有限期的首期期末、有限期的首期期初、有限期的若干期后的期末、无限期)的不同,可分为:普通年金(后付年金)、先付年金、递延年金、永续年金等几种。
故年金终值亦可分为:普通年金终值、先付年金终值、递延年金终值。(注:永续年金只有现值,不存在终值。)